Dirac's theorem on chordal graphs and Alexander duality
نویسندگان
چکیده
By using Alexander duality on simplicial complexes we give a new and algebraic proof of Dirac’s theorem on chordal graphs.
منابع مشابه
Complement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کاملm at h . A C ] 1 2 A pr 2 00 6 SEQUENTIALLY COHEN - MACAULAY EDGE IDEALS
Let G be a simple undirected graph on n vertices, and let I(G) ⊆ R = k[x 1 ,. .. , x n ] denote its associated edge ideal. We show that all chordal graphs G are sequentially Cohen-Macaulay; our proof depends upon showing that the Alexander dual of I(G) is componentwise linear. Our result complements Faridi's theorem that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay and im...
متن کاملSequentially Cohen-macaulay Edge Ideals
Let G be a simple undirected graph on n vertices, and let I(G) ⊆ R = k[x1, . . . , xn] denote its associated edge ideal. We show that all chordal graphs G are sequentially Cohen-Macaulay; our proof depends upon showing that the Alexander dual of I(G) is componentwise linear. Our result complements Faridi’s theorem that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay and impl...
متن کاملm at h . A C ] 1 N ov 2 00 5 SEQUENTIALLY COHEN - MACAULAY EDGE IDEALS
Let G be a simple undirected graph on n vertices, and let I(G) ⊆ R = k[x 1 ,. .. , x n ] denote its associated edge ideal. We show that all chordal graphs G are sequentially Cohen-Macaulay; our proof depends upon showing that the Alexander dual of I(G) is componentwise linear. Our result complements Faridi's theorem that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay and He...
متن کاملA short proof of Dirac's theorem on the number of edges in chromatically critical graphs
A short proof is presented for a theorem of G. A. Dirac (1974) giving a lower bound for the number of edges of a k-critical graph on a given number of vertices and describing all non-complete k-critical graphs with minimum edge excess.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2004